

**JOURNAL OF
MEDICINE - 24**

**JOURNAL OF
MEDICINE – 24**

Volume: 2 Issue: 1

2025

International Indices

ISSN: 3106-0668
e-ISSN: 3104-4700
DOI: 10.36719

Crossref
Content
Registration

© It is necessary to use reference while using the journal materials.

© medicine24@aem.az

© info@aem.az

© aem.az

Founder and Editor-in-Chief

Researcher Mubariz HUSEYINOV, Azerbaijan Science Center / Azerbaijan
<https://orcid.org/0000-0002-5274-0356>
tedqiqat1868@gmail.com

Editor

Prof. Dr. Ibadulla AGHAYEV, Azerbaijan Medical University / Azerbaijan

Assistant editors

Gulnar ALIYEVA, Azerbaijan Science Center / Azerbaijan
<https://orcid.org/0009-0004-1769-777X>
gulnar.musayeva1982@gmail.com

EDITORIAL BOARD

Prof. Dr. Eldar GASIMOV, Azerbaijan Medical University / Azerbaijan
Prof. Dr. Musa GANIYEV, Azerbaijan Medical University / Azerbaijan
Prof. Dr. Onur URAL, Selcuk University / Turkey
Prof. Dr. Charkaz JAFAROV, Azerbaijan Medical University / Azerbaijan
Prof. Dr. Akif BAGHIROV, Azerbaijan Medical University / Azerbaijan
Prof. Dr. Nuran ABDULLAYEV, University of Cologne / Germany
Prof. Dr. Nikolay BRIKO, First Moscow State Medical University named after I. M. Sechenov / Russia
Prof. Dr. Sudeyf IMAMVERDIYEV, Azerbaijan Medical University / Azerbaijan
Prof. Dr. David MENABDE, Kutaisi State University / Georgia
Prof. Dr. Elchin AGHAYEV, Azerbaijan Medical University / Azerbaijan
Assoc. Prof. Dr. Rafiq BAYRAMOV, Azerbaijan Medical University / Azerbaijan
Dr. Khanzoda YULDASHEVA, Center for the Development of Professional Qualifications of Medical Workers / Uzbekistan

<https://doi.org/10.36719/3104-4700/2/4-9>

Asmar Taghiyeva

V. Y. Akhundov Scientific Research Institute of Medical Prevention

<https://orcid.org/0000-0001-7637-7400>

esmer.tva@gmail.com

Nargiz Shukurova

V. Y. Akhundov Scientific Research Institute of Medical Prevention

<https://orcid.org/0009-0001-1183-1040>

nargizshukurova05@gmail.com

Nargiz Imamova

V. Y. Akhundov Scientific Research Institute of Medical Preventive Medicine

<https://orcid.org/0000-0001-8831-8133>

nergizimamova@gmail.com

Sevda Rahimli

V. Y. Akhundov Scientific Research Institute of Medical Preventive Medicine

<https://orcid.org/0009-0001-0332-9667>

sevda.rahimli90@gmail.com

In Vitro Cultivation and Cryopreservation of Leishmania Tropica Promastigotes

Abstract

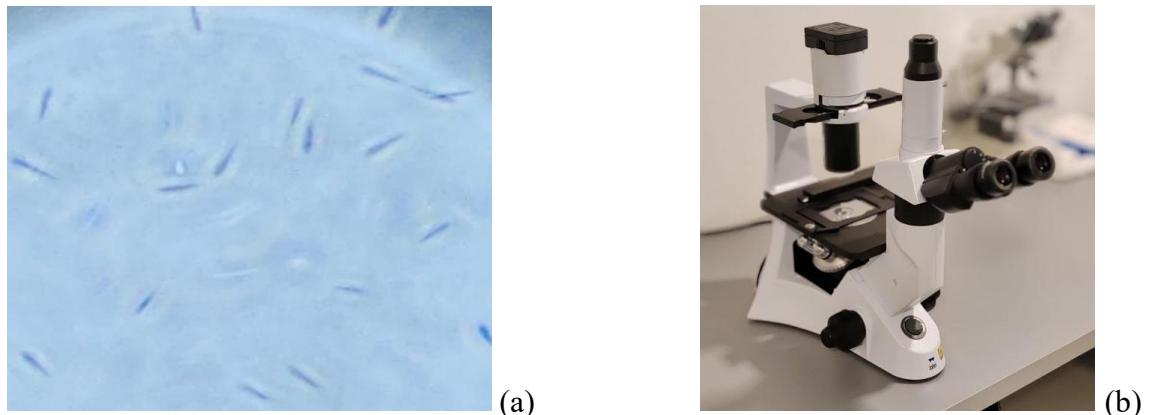
Leishmaniasis is a parasitic disease caused by protozoans of the genus *Leishmania* and is a member of the group of neglected diseases. The lack of an effective vaccine and the increasing resistance of the parasites to drugs and of the vectors to insecticides are causing the disease to spread worldwide and remain a serious public health problem in many countries. In recent years, the significant weakening of entomological measures in the endemic regions of our country has led to outbreaks of leishmaniasis in various areas, posing serious epidemiological threats. Although serious measures were taken in our country before the 1990s, the epidemiological situation has significantly worsened over the last 30 years, and the disease has begun to appear in numerous regions of the republic. To date, the species of *Leishmania* parasites found in the individual endemic regions have not been identified or molecularly typed. Additionally, because isolation of the parasites has not been possible, the susceptibilities of the drug preparations used against them have also not been determined. To solve the aforementioned problems, the isolation of *Leishmania* parasites, the establishment of their continuous culture, and the creation of a cryobank are of paramount importance. This research article presents in detail the methodological approaches applied for the in vitro cultivation, cryopreservation, and establishment of a cryobank for *Leishmania* parasites. These studies, conducted at the Department of Vaccine and Nanovaccine Research of the V. Y. Akhundov Scientific Research Institute of Medical Preventive Medicine, provided information on the isolation of parasites, the establishment of continuous cultures, and the creation of a cryobank.

Keywords: *Leishmania tropica*, leishmaniasis, non-cultivation, biobank, cryopreservation

Introduction

Leishmaniasis is a zoonotic, infectious parasitic disease caused by intracellular protozoans of the genus *Leishmania* (Allahverdiyev et al., 2023; Ayala et al., 2024). According to the World Health Organization (WHO), approximately 1.5–2 million new infections are recorded annually, making it the second most prevalent parasitic disease after malaria. Characterized by three main forms, the most prevalent form of leishmaniasis in Azerbaijan is visceral leishmaniasis (Kelleci et al., 2023). Viral leishmaniasis, recorded in nearly 50 regions of our country, is primarily found in plain, foothill, and mountainous districts (Goychay, Agdash, Barda, Agdam, Tartar, Shamkir, Agjabadi). Azerbaijan is considered an endemic area for leishmaniasis, and there is a need to develop and implement new strategies to combat this disease (Özbel et al., 2022). The main challenges in determining the true epidemiological scale of the disease include limited diagnostic capabilities, inadequate epidemiological surveillance systems, and the absence of an effective vaccine.

Research


In this regard, the identification of *Leishmania* species, the determination of resistance to antileishmanial drugs, and the conduct of future vaccine research establish an important scientific basis (Allahverdiyev et al., 2023). After many years, for the first time in Azerbaijan, the V. Y. Akhundov Scientific Research Institute of Medical Prevention, Research in the laboratory of the Vaccine and Nanovaccine Research Division on the propagation of *Leishmania tropica* promastigotes, the *in vitro* cultivation of parasites, and the creation of a *Leishmania* biobank enables the reliable use of local parasite strains for future scientific and experimental purposes. This work will play a significant role in the future production of new vaccines and other scientific research to combat the disease.

Process and cultivation of parasites' extraction from a liquid nitrogen environment

In this study, *Leishmania tropica* (*L. tropica*) promastigotes (MHOM/TR/99EP39) obtained from the Department of Bioengineering at Yildiz Technical University were used. All procedures were performed in the laboratory of the Vaccine and Nanovaccine Research Department at the Scientific-Research Institute of Medical Prevention, in accordance with aseptic techniques. The frozen parasites were taken from the cryobank (BIOBASE LNC-2-30) and thawed in a water bath (Water Bath VS-310). They are then rapidly thawed by gentle agitation in a 37°C water bath for 1–2 minutes. Once the parasites are fully thawed, they are transferred from the cryotube into culture flasks (25 cm²) pre-added with culture medium. The flask lids are sealed with Parafilm and incubated at 27°C in an incubator (DSI-300D). All work was performed in a laminar flow hood (HF safe 1800LC).

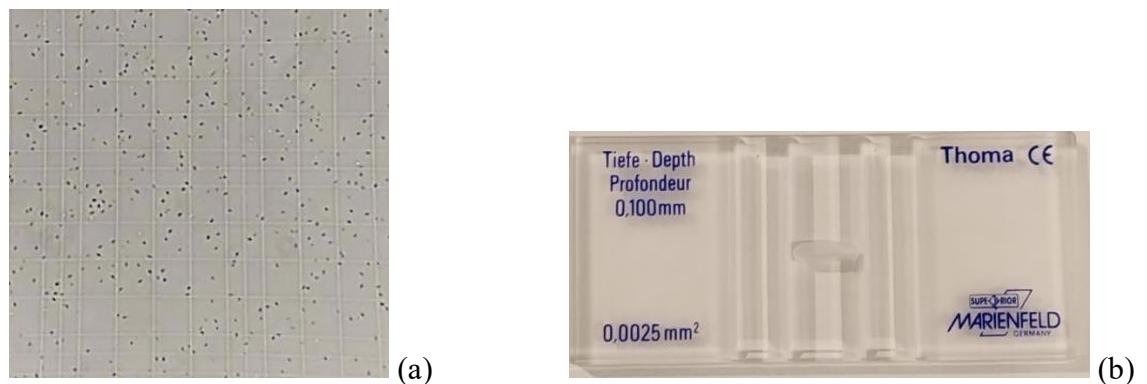
The RPMI-1640 and DMEM culture media are supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and gentamicin, then divided into portions and stored in a refrigerator. HEPES buffer was added to maintain the pH of the culture medium between 6.8 and 8.0.

The cultures were monitored every other day for the detection of promastigotes. Initially, 10⁵ parasites were added to the culture medium; the parasites developed and reached the stationary phase within 3–4 days, at which point the parasite number increased to 10⁷ (Fig. 1). To ensure the parasites remained in the logarithmic phase, they were passaged to fresh nutrient medium every 72 hours. Starting from the second day of incubation, the parasites' presence, morphology, viability, and changes in number were assessed every 24 hours using an inverted microscope (Ceti InversoTC-100). Additionally, the promastigote's morphological characteristics were analyzed using a staining method.

Figure 1. (a) Appearance of the *Leishmania tropica* parasite under a microscope; (b) Microscope equipment used in the study. (From a culture obtained in the Vaccine and Nanovaccine Laboratory of the ET Institute of Medical Prevention)

Determination of the number of parasites on a Thoma slide

To monitor the parasite multiplication dynamics, counts were performed on a Thoma slide every 24 hours. Due to the motility of promastigotes, direct counting is difficult. Therefore, the parasites were fixed before counting. For this, a sufficient amount of the parasite culture was taken, mixed with a 2% formalin solution in a 1:10 ratio, and incubated at room temperature for 3-5 minutes. During this time, the formalin immobilized the parasites. After fixation, the mixture was homogeneously mixed, and 10 μ L was pipetted from the sample onto a Thoma slide and counted using an inverted objective microscope (10 \times , 20 \times , 40 \times) (Fig. 2). The counting results were calculated using the following formula:


$$\text{Parasite count} = \text{Mean cell count} \times \text{Dilution factor} \times \text{Thoma slide constant}$$

Parasite count: Number of parasites per 1 ml

Mean cell count: Arithmetic mean of the cells in the 16 squares on the lower and upper halves of the Thoma slide

Dilution factor: Dilution factor used for counting

Thoma blade constant: 10,000

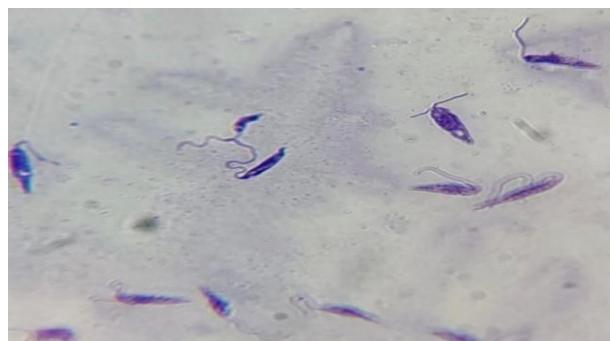


Figure 2. (a) Appearance of a slide preparation of the *Leishmania tropica* parasite; (b) The cover slip used in the study. (From a culture obtained in the Vaccine and Nanovaccine Laboratory of the ET Institute of Medical Preventive Medicine)

Morphological Observation

The staining process is performed under sterile conditions in a laminar flow hood. A drop of the cultured *L. tropica* promastigotes is placed on a sterile object slide and spread thinly with another object slide. After the sample is air-dried at room temperature (1-2 minutes), it is fixed with methanol

for 2–3 minutes. The concentrated Giemsa stain was diluted with distilled water in a 9:1 ratio to prepare a homogeneous solution. Fixed samples are stained with the prepared Giemsa stain and, after a 20 minute wait, are gently washed with distilled water. After the excess stain is removed, the slide is air-dried at room temperature. The morphological characteristics of *L. tropica* promastigotes were observed at 100 \times magnification (using an oil immersion lens) under a light microscope, and cell forms were evaluated in samples stained with Giemsa stain. Under the light microscope, the parasites are seen as cylindrical in shape, with one end pointed and the other end slightly broader, and the tail portion is clearly visible (Fig. 3).

Figure 3. Microscopic appearance of the *Leishmania tropica* parasite, stained with Giemsa stain. (From a culture obtained at the Vaccine and Nanovaccine Laboratory of the ET Institute of Medical Prevention)

Freezing of parasites for long-term preservation

The freezing process is carried out for the storage and long-term preservation of the culture. When the density of *L. tropica* promastigotes reaches approximately 10⁷ cells/mL, the samples are frozen under sterile conditions. An appropriate amount of the active promastigote sample is added to each sterile cryotube (LABSERVIS), and 10% dimethyl sulfoxide (DMSO) is slowly added along the inner wall of the tube. The sample and DMSO mixture is then gently pipetted a few times. After the tube caps are tightly sealed, a stepwise freezing procedure is applied: Initially, they are incubated at +4°C for 1 hour, followed by 2 hours in a -20°C freezer (bryusa). After the samples are frozen overnight at -80°C, they are placed in the cryobank system (-196°C, in liquid nitrogen) for long-term storage.

Conclusion

Leishmaniasis, a disease widespread in many tropical and subtropical regions, including Azerbaijan, is considered one of the most important public health problems in 98 countries (Sasidharan & Saudagar, 2021). An epidemiological analysis conducted for the years 2014–2018 determined that the annual average incidence of visceral leishmaniasis in Azerbaijan was approximately 1.7 cases per 100,000 population (Agayev et al., 2020).

The increasing trend in leishmaniosis cases is associated with the emergence of resistance to antileishmanial drugs used in the treatment of the disease (pentavalent antimonials, amphotericin B, miltefosine, etc.) and to insecticides in vectors (Nasiri, 2017). Climate conditions and the dynamics of the vector population also have a significant impact on the spread of the disease. Therefore, studying drug resistance at the molecular level, public awareness, in-depth analysis of the disease's epidemiology, and strengthening vector control measures, as well as the development and implementation of effective vaccine candidates, are considered priority areas in the management of leishmaniasis. The availability of vaccines successfully tested against leishmaniosis in dogs is considered a promising result for the future development of effective vaccines for humans (Morales-Yuste et al., 2022).

The detection of *Leishmania* parasites is based on a number of laboratory diagnostic approaches. These methods include culture, cytological, histopathological, serological, and molecular techniques (Allahverdiyev et al., 2023). The *in vitro* cultivation of parasites and their cryopreservation in a biobank is of strategic importance. Various semi-solid, liquid, or two-phase nutrient media are used for the cultivation process (Gow et al., 2022). The most commonly used media include Novy–MacNeal–Nicolle (NNN), Tobie's medium, Schneider's Drosophila medium, RPMI-1640, Brain Heart Infusion (BHI), and blood agar. These media provide different growth patterns depending on the parasite's morphological form and species composition (Ali, 2018). Fetal bovine serum (FBS) used in parasite culture provides growth factors necessary for cell proliferation. However, the high price of FDS and difficulties in its procurement from reliable sources limit the use of this component (de Oliveira et al., 2024). Therefore, in recent years, research has been conducted on the use of various serum replacement formulas and natural extracts that stimulate parasite growth as an alternative to FDS (Allahverdiyev et al., 2012). Parasite *in vitro* cultivation can be performed using conventional (classic) and microcapillary cultivation methods. The microcapillary method has advantages over classic approaches, such as requiring a smaller sample volume, demonstrating higher sensitivity, providing faster results, and being more cost-effective. The microcapillary cultivation method developed by A. M. Allahverdiyev and colleagues is characterized by high specificity and sensitivity. This method ensures the optimal growth of parasites by creating microaerophilic conditions in capillary tubes (Allahverdiyev et al., 2004).

In the laboratory of the Vaccine and Nanovaccine Research Division, *Leishmania* parasites are cultivated *in vitro*, and the resulting samples are cryopreserved and stored in a biobank. Additionally, antigens have been obtained from various species of *Leishmania* parasites cultivated under *in vitro* conditions. The results obtained will provide broad opportunities for future research in identifying the cryopreserved *Leishmania* parasites, determining their susceptibility to drug treatments, and developing nanovaccines.

References

1. Agayev, I., Vahabov, E., Jalilov, V., Moradi-Asls E., & Saghafipour, A. (2020). Epidemiological situation and spatial distribution of visceral leishmaniasis in the Republic of Azerbaijan. *Journal of Parasitic Diseases*, 44(3), 639–645. <https://doi.org/10.1007/s12639-020-01242-4>
2. Ali, Nuha Saleem Mohammed. (2018). In Vitro new experimentally culture media for *Leishmania* species cultivation. *Tikrit Journal of Pharmaceutical Sciences*, 13(1), 30–36. <https://doi.org/10.25130/tjphs.2018.13.1.5.30.36>
3. Allahverdiyev, A. M., & Bagirova, I. M. (2023). *Epidemiology, Diagnosis, Treatment and Prevention of Leishmaniasis*. “Zardabi” Publishing LLC.
4. Allahverdiyev, A. M., Uzun, S., Bagirova, M., Durdu, M., & Memisoglu, H. R. (2004). A Sensitive New Microculture Method For Diagnosis Of Cutaneous Leishmaniasis. *The American Journal of Tropical Medicine And Hygiene*, 70(3), 294–297. <https://doi.org/10.4269/ajtmh.2004.70.294>
5. Allahverdiyev, A. M., Bagirova, M., Elcicek, S., Oztel, O. N., Koca, R. C., Novruzova, M., & Ates, S. C. (2012). Growth of *Leishmania tropica* promastigotes in urine samples of different genders and the role of citrate in culture. *Romanian Biotechnological Letters*, 17(1), 7000.
6. Ayala, A., Llanes, A., Lleonart, R., & Restrepo, C. M. (2024). Advances in *Leishmania* Vaccines: Current Development and Future Prospects. *Pathogens*, 13(9), 812. <https://doi.org/10.3390/pathogens13090812>
7. de Oliveira, Filho., Virlânia, Alves, Marcus Sávio Araujo, Garcia, Leticia Bazilio, Rosa, Giorgio, & Danilo Ciccone Miguel. (2024). An Overview of *Leishmania* *In Vitro* Cultivation and Implications for Antileishmanial Screenings against Promastigotes. *Parasitologia*, 4(4), 305–318. <https://doi.org/10.3390/parasitologia4040027>

8. Gow, I., Smith, N. C., Stark, D. et al. (2022). Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focused review of detection and identification methods. *Parasites & Vectors*, 15, 412. <https://doi.org/10.1186/s13071-022-05524-z>
9. Kelleci, K., Allahverdiyev, A., Bagirova, M., Ihlamur, M., & Abamor, E. Sh. (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. *Journal of Vector Borne Diseases*, 60(2), 125–141. <https://doi.org/10.4103/0972-9062.361179>
10. Morales-Yuste, M., Martín-Sánchez, J., & Corpas-Lopez, V. (2022). Canine Leishmaniasis: Update on Epidemiology, Diagnosis, Treatment, and Prevention. *Vet Sci.*, 9(8), 387. <https://doi.org/10.3390/vetsci9080387>
11. Nasiri, V. (2017). An overview of the recent findings in the cultivation of Leishmania. *Reviews in Medical Microbiology*, 28(1), 34–42. <https://doi.org/10.1097/mrm.0000000000000093>
12. Özbel, Y., Töz, S., Muñoz, C., Ortuño, M., Jumakanova, Z., Pérez-Cutillas, P., Maia, C., Conceição, C., Baneth, G., Pereira, A., Van der Stede, Y., & Gossner, C. M. E. (2022). The current epidemiology of leishmaniasis in Turkey, Azerbaijan and Georgia and implications for disease emergence in European countries. *Zoonoses and Public Health*, 69(5), 395–407. <https://doi.org/10.1111/zph.12977>
13. Sasidharan, S., & Saudagar, P. (2021). Leishmaniasis: Where are we and where are we heading? *Parasitology Research*, 120, 1541–1554. <https://doi.org/10.1007/s00436-021-07139-2>

Received: 19.08.2025

Accepted: 19.11.2025

<https://doi.org/10.36719/3104-4700/2/10-14>

Peri Huseynova

Nakhchivan State University

Doctoral student

<https://orcid.org/0009-0002-7021-7806>

perihuseynova@ndu.edu.az

Aliye Jafarli

Nakhchivan State University

<https://orcid.org/0009-0001-3609-3873>

ceferlialiyel055@gmail.com

Aynur Aliyeva

Nakhchivan State University

<https://orcid.org/0009-0003-0013-2206>

aynuraliyeva05@icloud.com

Sakina Abdullayeva

Nakhchivan State University

<https://orcid.org/0009-0000-4378-0148>

abdlyvas17@gmail.com

Aytaj Alekberova

Nakhchivan State University

<https://orcid.org/0009-0002-9970-7155>

aytaclkbrli30@gmail.com

Schiff Bases in Biomedical Applications: A Review

Abstract

Schiff bases, a prominent class of organic compounds formed via condensation reactions between primary amines and carbonyl compounds, have attracted increasing attention in biomedical research. Their structural flexibility and chemical functionality enable a wide range of biological activities, positioning Schiff bases as promising candidates in antimicrobial strategies, drug delivery systems, diagnostic technologies, and biomaterial design. In recent studies, diverse Schiff base derivatives have demonstrated notable effectiveness against a broad spectrum of microbial strains, highlighting their potential as alternative or complementary agents in addressing antimicrobial resistance.

Beyond their direct biological activity, Schiff bases have been extensively investigated as functional components in advanced and targeted drug delivery systems. Their chemical adaptability supports the development of delivery platforms with controlled release behavior, improved bioavailability, and enhanced therapeutic efficiency. Such systems are particularly valuable in minimizing off-target effects and optimizing drug performance in complex biological environments. In parallel, the distinctive coordination and signaling properties of Schiff bases have facilitated their application in diagnostic and sensing technologies, where they have been employed in the detection and monitoring of biologically relevant species with high sensitivity and selectivity.

This narrative review critically discusses the biomedical applications of Schiff bases, with particular emphasis on their antimicrobial mechanisms, roles in targeted drug delivery, diagnostic sensing capabilities, and contributions to biomaterials for tissue engineering.

Keywords: schiff bases, antimicrobial activity, drug delivery, diagnostic sensors, biomaterials

Introduction

Schiff bases constitute an important family of organic compounds characterized by the presence of an azomethine ($-C=N-$) functional group, typically obtained through condensation reactions between primary amines and aldehydes or ketones (Savita et al., 2025). Due to their synthetic accessibility, structural diversity, and tunable physicochemical properties, Schiff bases have long been studied in various fields of chemistry. In recent years, their biomedical relevance has become increasingly apparent, particularly in response to emerging challenges such as antimicrobial resistance, targeted therapy requirements, and the demand for advanced diagnostic tools (Alammari et al., 2025).

The biological versatility of Schiff bases arises from their ability to interact with biomolecular targets through hydrogen bonding, coordination interactions, and electronic effects associated with the azomethine linkage (Pankaj et al., 2025). These features have enabled the exploration of Schiff bases across multiple biomedical domains, including antimicrobial agents, drug delivery platforms, diagnostic systems, and biomaterials for tissue engineering (Alshehab et al., 2025). This review focuses on these application areas, providing a structured discussion of mechanisms, advantages, and limitations.

Research

Antimicrobial Properties of Schiff Bases. Among the various biomedical applications of Schiff bases, their antimicrobial activity has been one of the most extensively investigated. Schiff base compounds and their derivatives have demonstrated effectiveness against a broad spectrum of microorganisms, including bacteria and fungi. Several mechanistic pathways have been proposed to explain their antimicrobial behavior (Buldurun et al., 2019). One of the primary mechanisms involves disruption of microbial cell membranes. Schiff bases and their degradation products are capable of compromising membrane integrity, leading to leakage of cellular contents, osmotic imbalance. This membrane-targeting effect plays a crucial role in both antibacterial and antifungal activity.

Another important mechanism is the generation of reactive oxygen species. Certain Schiff base compounds can induce intracellular ROS accumulation, resulting in oxidative stress that damages essential cellular components such as proteins, lipids, and nucleic acids, ultimately leading to microbial cell death (Yan et al., 2024).

Additionally, Schiff bases may interact directly with key cellular constituents. Binding to enzymes, structural proteins, or genetic material can disrupt vital biological processes and inhibit microbial growth. Such interactions further enhance their antimicrobial efficacy and highlight their potential as alternative antimicrobial agents (Morales-Guevara et al., 2025).

Given the global rise in antibiotic resistance, these multifaceted antimicrobial mechanisms make Schiff bases particularly attractive candidates for the development of new bioactive agents. In a broader context, structurally related azomethine-based systems, including hydrazone-derived organic ligands, have also been reported to exhibit notable application prospects owing to their adaptable coordination behavior and functional versatility, further supporting the biomedical relevance of this class of compounds (Huseynova, 2025).

Schiff Bases in Drug Delivery Systems. Beyond direct biological activity, Schiff bases have also shown significant promise in drug delivery applications. Their chemical adaptability allows them to function as components of systems designed to improve drug solubility, stability, and targeted delivery (Hamad et al., 2025).

One important strategy involves the formation of Schiff base metal complexes. Coordination with transition metals can enhance the physicochemical properties of therapeutic agents, resulting in improved solubility and bioavailability. Such metal–Schiff base complexes often exhibit enhanced pharmacological performance compared to free drug molecules (Ibrahim et al., 2021).

Another notable application is the incorporation of Schiff base linkages into self-healing hydrogels. These systems exploit the dynamic nature of Schiff base bonds, enabling responsiveness to physiological stimuli. Self-healing hydrogels based on Schiff chemistry have been explored for

controlled drug release, offering sustained therapeutic effects and improved treatment efficiency (Junpeng et al., 2019).

The ability to design stimuli-responsive delivery systems positions Schiff bases as valuable tools in modern drug delivery research (Guilong et al., 2025).

Diagnostic Applications of Schiff Bases. Schiff bases have also found important applications in biomedical diagnostics, particularly in the development of sensing platforms for analyte detection. Their coordination ability and optical properties make them suitable for both electrochemical and optical diagnostic systems (Faridbod et al., 2007).

In electrochemical diagnostics, Schiff bases have been utilized in the construction of ion-selective electrodes (ISEs). These systems enable selective and sensitive detection of metal ions, which is critical in clinical diagnostics and biomedical monitoring as well as environmental analysis (Zhong et al., 2022).

In addition, Schiff base compounds have been widely investigated as fluorescent sensors. Their capacity to exhibit fluorescence modulation upon interaction with specific ions or molecules allows for turn-on or turn-off sensing mechanisms. Such properties are particularly valuable in clinical diagnostics, where rapid and selective detection is essential (Behura et al., 2024).

These diagnostic applications further demonstrate the versatility of Schiff bases in biomedical science.

Schiff Bases as Biomaterials for Tissue Engineering. The role of Schiff bases in biomaterial development has expanded significantly, particularly in the context of tissue engineering and regenerative medicine (Berhanu et al., 2019). Schiff base-derived materials, especially those incorporated into cross-linked or polymeric systems, often exhibit favorable biocompatibility profiles, making them suitable for biomedical use (Klaser et al., 2025).

An important advantage of Schiff base-based biomaterials is their tunability. By modifying chemical structure and cross-linking density, it is possible to design materials with tailored mechanical strength, degradation behavior, and chemical stability. These properties are essential for applications such as wound healing, tissue regeneration, and scaffold design in tissue engineering (Rana et al., 2024).

The adaptability of Schiff base chemistry thus supports the development of functional biomaterials capable of meeting diverse biomedical requirements.

Challenges and Future Perspectives. Despite the promising biomedical potential of Schiff bases, several challenges must be addressed to facilitate broader application. Stability under physiological conditions, long-term biocompatibility, and controlled degradation remain key concerns. Furthermore, systematic evaluation of structure–activity and structure–toxicity relationships is necessary to ensure safe and effective biomedical use.

Future research is expected to focus on rational molecular design, improved understanding of biological interactions, and the integration of Schiff bases into multifunctional biomedical systems. Advances in material science and molecular engineering are likely to further enhance the translational potential of Schiff base-based technologies (Khalifa et al., 2025).

Conclusion

Schiff bases represent a multifunctional and chemically versatile class of compounds with substantial relevance to biomedical applications. Their demonstrated antimicrobial activity, utility in advanced drug delivery systems, effectiveness in diagnostic technologies, and contribution to biomaterial design highlight their importance in contemporary medical research. Continued exploration and refinement of Schiff base chemistry are expected to yield innovative solutions to current biomedical challenges, including antimicrobial resistance and the need for efficient diagnostic and therapeutic platforms.

References

1. Alammari, S., Aroua, L., & Alminderej, F. (2025). Schiff bases performance and challenge: Chemical synthesis and current state of biological activities. *Egyptian Journal of Chemistry*, 68(8), 425–449. <https://doi.org/10.21608/ejchem.2024.333199.10741>
2. Alshehab, A., Haider, A., & Jaragh-Alhadad, L. (2025). Significance of Nano Transition Metal Complexes as Anticancer and Antibacterial Therapeutic Agents. *International Journal of Molecular Sciences*, 26(21), 10516. <https://doi.org/10.3390/ijms262110516>
3. Behura, R., Mohanty, P., Dash, P. P., (...), & Jali, B. R. (2024). Cation, Anion and Protein Interaction of Schiff Bases and Their Derivatives: A Mini Review. *Letters in Applied NanoBioScience*, 13(3), 125. <https://doi.org/10.33263/LIANBS133.125>
4. Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A., Aulakh, J., Kumar, V., & Kim, K. (2019). A review of the applications of Schiff bases as optical chemical sensors. *Trends in Analytical Chemistry*, 116, 74–91. <https://doi.org/10.1016/j.trac.2019.04.025>
5. Buldurun, K., Turan, N., Savci, A., & Çolak, N. (2019). Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. *Journal of Saudi Chemical Society*, 23(2), 205–214. <https://doi.org/10.1016/j.jscs.2018.06.002>
6. Faridbod, F., Ganjali, M. R., Dinarvand, R., & Norouzi, P. (2007). Ion recognition: Application of symmetric and asymmetric Schiff bases and their complexes for the fabrication of cationic and anionic membrane sensors to determine ions in real samples. *Combinatorial Chemistry and High Throughput Screening*, 10(7), 527–546. <https://doi.org/10.2174/138620707782152335>
7. Guilong, L., Jing, Z., Kaiwei, R., Mingdong, C., Gong, N., & Zeng, X. (2025). Injectable Hyaluronic Acid Hydrogel Integrated with Hybrid Nanovesicles for Synergistic Enhancement of Transdermal Drug Delivery. *Chemistry – A European Journal*, 31(58), e01465. <https://doi.org/10.1002/chem.202501465>
8. Hamad, A. A., Omer, R. A., Kaka, K. N., ... & Rashid, R. F. (2025). Biological activities of metal complexes with Schiff base. *Reviews in Inorganic Chemistry*, 45(3), 543–552. <https://doi.org/10.1515/revic-2024-0075>
9. Huseynova, P. (2025). Application Prospects of Hydrazone-Based Organic Ligands. *Nature & Science*, 7(10), 27–30. <https://doi.org/10.36719/2707-1146/61/27-30>
10. Ibrahim, F. M., & Abdalhadi, S. M. (2021). Performance of Schiff Bases Metal Complexes and Their Ligand in Biological Activity: A Review. *Al-Nahrain Journal of Science*, 24(1), 1–10. <https://doi.org/10.22401/ANJS.24.1.01>
11. Junpeng, X., Liu, Y., & Hsu, S.-H. (2019). Hydrogels based on schiff base linkages for biomedical applications. *Molecules*, 24(16), 3005. <https://doi.org/10.3390/molecules24163005>
12. Khalifa, M., Hassouna, C., Fatma, B., Allouche, A., Baouab, M., Chaabane, R., & Mlika, R. (2025). A novel V-shaped macrocyclic Schiff base molecule for optical glucose sensing applications. *Journal of Molecular Liquids*, 437, 128540. <https://doi.org/10.1016/j.molliq.2025.128540>
13. Klaser, T., Jaklin, M., Popovic, J., Grgicevic, I., & Skoko, Z. (2025). Thermal Strain and Microstrain in a Polymorphic Schiff Base: Routes to Thermosalience. *Molecules*, 30(12), 2567. <https://doi.org/10.3390/molecules30122567>
14. Morales-Guevara, R., Paez-Hernandez, D., Gacitua, M., ... & Carreñoa, A. (2025). Redox potential studies based on scan-rate analysis of the diffusional control and DFT calculations of the schiff base [(E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid]. *Química Nova*, 48(1), e-20250005. <https://doi.org/10.21577/0100-4042.20250005>
15. Pankaj, H., Kumar, M., & Pranjit, B. (2025). A new fluorinated Schiff base and its Cu(II), Co(II), and Zn(II) complexes: Spectral characterization, DNA binding, in-vitro biological assays and molecular docking study. *Inorganic Chemistry Communications*, 182, 115612. <https://doi.org/10.1016/j.jinoche.2025.115612>

16. Rana, M., Islam, A., Islam, S., Sarafi, S., & Asraf, M. (2024). A Review on Synthesis and Biological Activities of 2-Aminophenol-Based Schiff Bases and Their Transition Metal Complexes. *Applied Organometallic Chemistry*, 38(12), e7724. <https://doi.org/10.1002/aoc.7724>
17. Savita, C., Kumar, S., Sanjana, P., Ashutosh, M., Pravinkumar, V., Prakash, K., & Anupam, B. (2025). Keto–enol at play: regioisomerism regulated switching in indole-naphthyl Schiff bases. *Physical Chemistry Chemical Physics*, 27(39), 21050–21058. <https://doi.org/10.1039/D5CP01939G>
18. Yan, M., Wu, S., & Zhao, W. (2024). Schiff Base-based Antibacterial and Antifouling Materials: Structural Design, Preparation, Properties and Mechanism. *Zhongguo Biaomian Gongcheng/China Surface Engineering*, 37(6), 401–427. <https://doi.org/10.11933/j.issn.1007-9289.20231229006>
19. Zhong, X., Li, Z., Shi, R., (...), & Li, H. (2022). Schiff Base-Modified Nanomaterials for Ion Detection: A Review. *ACS Applied Nano Materials*, 5(10), 13998–14020. <https://pubs.acs.org/doi/10.1021/acsanm.2c03477>

Received: 02.08.2025

Accepted: 21.11.2025

<https://doi.org/10.36719/3104-4700/2/15-19>

Aynurə Safarova
Clinical Psychiatric Hospital No. 2
<https://orcid.org/0000-0002-2198-9116>
safarova86aynur@gmail.com

Depression and Anxiety Disorders: A Global Mental Health Problem of the 21st Century

Abstract

In the 21st century, depression and anxiety disorders have become one of the major global challenges to human health. The acceleration of modern lifestyles, socio-economic changes, information overload, instability, and conflicts negatively affect people's psychological well-being. Research shows that depression and anxiety disorders significantly undermine not only individual health but also work productivity, social relations, and overall quality of life. The growing prevalence of these conditions highlights the urgent need for early detection, strengthening of preventive measures, and improvement of treatment methods. Protecting mental health requires enhanced cooperation between governments, healthcare institutions, and society at large.

Keywords: depression, anxiety disorders, mental health, 21st century, global problem, prevention, treatment, social impacts

Introduction

In the 21st century, one of the most significant issues concerning human health is the rapid increase of mental disorders, particularly depression and anxiety disorders. According to reports by the World Health Organization, millions of people worldwide are affected by these conditions every year, and their quality of life is severely diminished. The rapid technological development of the modern era, socio-economic changes, increased information load, urbanization, war, and migration negatively impact individuals' psychological well-being. As a result, these disorders have transformed from individual health problems into global issues affecting the social and economic development of entire societies (Global Burden of Disease Study, 2019).

Depression weakens a person's daily functioning, restricts social relationships, reduces work productivity, and in severe cases may lead to suicide. Anxiety disorders bring constant worry, fear, and uncertainty into a person's life, harming both psychological and physical health. These two conditions are closely interconnected and are frequently observed together. In the modern era, the widespread nature of depression and anxiety disorders increases the importance of early detection and appropriate treatment. Protecting mental health requires not only the healthcare system but also education, family, public organizations, and state policy to work together. Ensuring the psychological well-being of every member of society is essential not only for individuals but also for the social and economic stability of states (Anxiety Disorders, 2023).

Depression and anxiety disorders are recognized as some of the most serious global mental health issues of the 21st century. These conditions significantly affect individuals' daily functioning, social relationships, and overall quality of life. Depression is not merely a sad mood; it is a complex disorder accompanied by low energy, loss of motivation, sleep and appetite disturbances, and problems with attention and memory.

According to the World Health Organization, depression affects all age groups but is particularly widespread among young people and middle-aged adults. If left untreated, depression may lead to severe consequences, including suicide (Global Burden of Disease 2021, 2023).

Anxiety disorders are characterized by persistent and irrational fears related to future events. Panic attacks, phobias, and generalized anxiety disorder are the most common types. These conditions involve both physical symptoms (such as heart palpitations, sweating, and muscle tension) and psychological symptoms, significantly limiting social and occupational functioning (Epidemiology of Anxiety Disorders, 2023).

Research

Depression and anxiety disorders contribute to decreased work productivity, academic failure, and increased healthcare costs. With the influence of mobile phones, social media, and fast-paced daily life, mental health problems have become even more prevalent. Isolation and chronic stress increase the risk of both depression and anxiety. Global events such as the COVID-19 pandemic have further worsened mental health worldwide (Global Burden of Disease, 2021).

Early diagnosis, psychotherapy, medication, and social support play an essential role in managing depression and anxiety disorders. Physical activity, balanced nutrition, proper sleep routines, and stress management are also important protective factors. Awareness-raising initiatives and improving access to mental health services are considered key strategies in combating these problems in the 21st century (Rising Global Burden of Anxiety Disorders Among Adolescents and Young Adults: A Global Analysis, Frontiers in Psychiatry, 2024).

The 21st century is marked by rapid social, economic, and technological change. While these developments have improved many aspects of life, they have also contributed to the rise of mental health disorders. Depression and anxiety have become some of the most concerning global mental health issues of this era, significantly affecting individuals' daily activities, social interactions, and quality of life (Change in Global Burden of Depressive and Anxiety Disorders Due to COVID-19, 2025).

As a multidimensional disorder, depression presents not only as a low mood but also through symptoms such as low energy, loss of motivation, sleep and appetite disruptions, and cognitive difficulties. Although it affects all ages, it is especially common among young and middle-aged adults. Without timely treatment, depression may lead to severe consequences, including suicide (Anxiety Disorders, 2023).

Anxiety disorders are defined by persistent fear and worry about potential future events. Common forms include panic attacks, phobias, and generalized anxiety disorder. These disorders involve both physical symptoms (heart palpitations, sweating, muscle tension) and psychological distress, leading to significant limitations in social and occupational functioning (Global Burden of Disease, 2021).

In the 21st century, depression and anxiety disorders affect various sectors on a global scale. Reduced work productivity, academic difficulties, and increased health expenditures are among the key socio-economic consequences. Increased use of mobile devices and social media, fast-paced lifestyle, isolation, and stress contribute to the rise of these disorders. Global events such as the COVID-19 pandemic have intensified mental health problems (Global Mental Health, 2023).

Early diagnosis, psychotherapy, pharmacological treatment, and social support are essential in preventing and managing mental health disorders. Furthermore, promoting physical activity, maintaining a balanced diet, regulating sleep patterns, and managing stress are vital for protecting mental well-being. Awareness programs, eliminating misconceptions about mental health, and strengthening support mechanisms help reduce the prevalence of these disorders at the societal level (Scientific Reports, 2024; Epidemiology of Anxiety Disorders, 2023).

Depression and anxiety disorders not only affect individuals but also exert broad social and economic impacts. Reduced human productivity, increased unemployment, and growing healthcare expenditures illustrate the economic burden of these disorders. Technological advancement and the widespread use of social media serve as both communication tools and sources of stress (Mental Health By the Numbers National Alliance on Mental Illness (NAMI), 2023).

As people move away from real-life social interactions, cases of isolation and social withdrawal increase, raising the risk of depression and anxiety. Additionally, global events—pandemics, economic crises, and natural disasters—further intensify mental health concerns (Anxiety Disorders, 2023).

As people withdraw further into digital environments, traditional support networks—family, community, workplace relationships—gradually weaken. This erosion of interpersonal bonds reduces individuals' resilience against stress and emotional difficulties. When face-to-face communication is replaced by virtual interactions, subtle social cues such as empathy, emotional expression, and mutual understanding diminish, leading to feelings of emptiness and disconnection. Over time, the lack of meaningful human contact becomes a profound risk factor, contributing not only to depression and anxiety but also to chronic loneliness, reduced self-esteem, and impaired social functioning.

Moreover, the rapid pace of technological development creates a paradox: although people are more connected than ever before, they increasingly report feeling isolated. Social media platforms, while offering instant communication, often promote unrealistic comparisons and heightened self-criticism. Exposure to idealized lifestyles, economic pressure, and societal expectations intensifies psychological vulnerability, particularly among young people. This digital overload can disrupt sleep patterns, reduce attention span, and contribute to emotional instability, further worsening existing mental health conditions.

Global challenges add an additional layer of strain. Pandemics, for example, not only restrict physical mobility but also trigger fear of illness, financial insecurity, and uncertainty about the future. Economic crises may lead to unemployment, decreased income, and instability in social structures, which creates long-term stress affecting individuals and families alike. Natural disasters force sudden changes in living conditions, displacement, and traumatic loss, all of which elevate the prevalence of post-traumatic stress disorder, depression, and anxiety disorders. These events also place additional burdens on already overstretched healthcare systems, limiting access to timely psychological support.

Furthermore, the stigma surrounding mental health remains a significant barrier. In many societies, individuals hesitate to seek help due to fear of judgement or social rejection. This reluctance leads to delayed diagnosis, under-treatment, and worsening symptoms. The lack of awareness and inadequate mental health education prevent people from recognizing early warning signs, reducing their chances of receiving effective intervention. As a result, depression and anxiety continue to spread silently, becoming deeply rooted in communities. At the same time, increasing urbanization contributes to psychological distress. High population density, environmental pollution, noise, and a fast-paced lifestyle create continuous stress. Many individuals struggle to maintain work-life balance, and the pressure to remain productive in competitive environments leaves little room for rest and self-care. This cumulative stress, if not addressed, can lead to emotional exhaustion, burnout, and long-term mental health disorders.

Another important factor is socioeconomic inequality. Limited access to healthcare, education, and stable employment disproportionately affects vulnerable populations. Individuals facing poverty, discrimination, or displacement often lack emotional resources and institutional support. These inequalities amplify the negative impact of global crises, making certain groups significantly more prone to developing mental health problems.

Despite these challenges, there is growing recognition of the need for comprehensive mental health strategies. Governments, educational institutions, and health organizations are increasingly focusing on preventive measures such as awareness campaigns, strengthening community-based support systems, and integrating mental health services into primary healthcare. Enhancing digital literacy and promoting healthy online behavior can also mitigate the negative effects of social media. Encouraging open communication, reducing stigma, and ensuring accessible, affordable psychological services are essential steps toward improving societal mental well-being.

Conclusion

Early identification and treatment of depression and anxiety improve overall quality of life and contribute to the well-being of society. Psychological support, access to social resources, a balanced lifestyle, and stress management reduce the risk of developing these disorders. Furthermore, expanding educational and awareness programs, eliminating stigmas, and strengthening support systems play an important role in promoting mental health at both individual and societal levels.

The development of mental health policy at the state level, training of professional personnel, and implementation of preventive measures are also crucial for reducing the prevalence of depression and anxiety disorders.

In conclusion, depression and anxiety disorders represent major global mental health challenges of the 21st century, affecting individuals' quality of life, social relationships, and economic productivity. Addressing these issues requires not only individual treatment and support but also systematic solutions involving state policy, education, and social infrastructure. Early intervention, prevention, improved access to mental health services, trained specialists, and expanded awareness programs are essential long-term strategies for preventing the spread of depression and anxiety disorders and enhancing societal well-being.

Mental health must be prioritized as a fundamental component of public health in every society. Governments should develop comprehensive mental health frameworks that ensure equal access to psychological and psychiatric services for all citizens. Schools and universities need to integrate mental health education into their curriculum to promote early recognition of symptoms among young people. Workplaces should implement policies that support employee well-being and reduce stress-related risks. Community-based support centers can play a crucial role in providing accessible psychological assistance. Public campaigns should focus on eliminating stigma associated with mental health disorders. Reducing stigma encourages individuals to seek help without fear or shame. Technological tools, such as digital therapy platforms and mobile mental health applications, can increase access to professional support. Investments in mental health research are necessary to better understand the underlying causes and improve treatment methods. International cooperation is also essential, as mental health challenges are shared across borders. Economic policies must consider the financial burden caused by untreated mental health disorders. Strengthening family support systems can help individuals cope with emotional difficulties more effectively. Encouraging physical activity and healthy lifestyle habits contributes significantly to improving overall psychological well-being. Healthcare workers should receive continuous training on updated mental health practices. Crisis intervention services must be readily available for individuals at immediate risk. Ultimately, creating a supportive and inclusive environment is key to reducing the long-term impact of depression and anxiety disorders on society.

References

1. Anxiety Disorders: Global Burden and Trends Over the Last Three Decades. (2023). *Mental Health in Family Medicine*.
2. Change in Global Burden of Depressive and Anxiety Disorders Due to COVID-19. (2025). *The Lancet Psychiatry*.
3. Depression and Anxiety Among US Children and Young Adults: Trends and Implications. (2023). *JAMA Network Open*.
4. Global Burden of Disease Collaborative Network. (2019). *Global burden of disease study 2019: Global, regional, and national burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study*.
5. Global Burden of Disease 2021: Mental Health Messages. (2023). *The Lancet Psychiatry*.
6. Global Mental Health: Where We Are and Where We Are Going. (2023). *JAMA Psychiatry*.
7. Global Prevalence of Depression, Anxiety, and Stress in the Elderly: A Systematic Review. (2024). *BMC Geriatrics*.

8. Global Mental Health Crisis Hits Workplaces: Economic Implications and Policy Responses. (2024). *Financial Times*.
9. National Alliance on Mental Illness (NAMI). (2023). *Mental Health by the Numbers*.
10. Prevalence of Depression and Anxiety Among Adults With Chronic Pain: A Systematic Review and Meta-Analysis. (2023). *Journal of Clinical Psychiatry*.
11. Rising Global Burden of Anxiety Disorders Among Adolescents and Young Adults: A Global Analysis. (2024). *Frontiers in Psychiatry*.
12. Springer Open Health. (2023). *Epidemiology of Anxiety Disorders: Global Burden and Regional Variations*.
13. The Burden of Adolescent Depression and the Impact of COVID-19: A Global Perspective. (2024). *Scientific Reports*.
14. World Health Organization. (2023). *Anxiety Disorders: A Global Overview and Future Directions*.

Received: 19.08.2025

Accepted: 10.11.2025

<https://doi.org/10.36719/3104-4700/2/20-24>

Khasmurat Ismayilzadeh
Istanbul Gedik University
<https://orcid.org/0009-0000-8871-7150>
xasmurat2003@gmail.com

Adopted Standards For Human Health

Abstract

The World Health Organization (WHO) defines health as: "Health is a state of complete physical, mental and social well-being and the absence of disease or infirmity". Human health also varies depending on the availability of living conditions and resources, including a place to live, adequate education, food security, material income, peace and security, social justice, equality and a healthy environment. One of the main factors characterizing health is the interaction of a person's own internal health with the external factors that determine it. Regardless of the influence of these external factors, the main responsibility lies with each individual and each person must ensure his or her own health.

Many factors affect the normal life and functioning of people in the world. The most important of these is human health. If a person is not healthy, there can be no talk of any normal activity and development. A healthy person means not only the health of his body, but also his mental health. Since health is a dynamic concept determined by society, there is no specific and standard definition of it. If we take it more broadly, health means the coexistence of many of the following conceptual models: – the presence of external and internal balance of the human body – the absence of diseases in the human body – the ability to live and function normally – the presence of social well-being.

Keywords: *human health, environment, medical factors, WHO, accepted standards for health, physical health*

Introduction

Many factors affect the normal life and functioning of people in the world. The most important of these is human health. If a person is not healthy, there can be no talk of any normal activity and development. A healthy person means not only the health of his body, but also his mental health. Since health is a dynamic concept determined by society, there is no specific and standard definition of it. In a broader sense, health means the presence of many of the following conceptual models: – the presence of external and internal balance of the human body – the absence of diseases in the human body – the ability to live and function normally – the presence of social well-being.

The World Health Organization (WHO) defined health as follows: "Health is a state of complete physical, mental and social well-being and the absence of disease and infirmity". Human health also varies depending on the degree of availability of living conditions and resources, which include a place to live, adequate education, food security, material income, peace and security, social justice, equality and a productive environment. One of the main factors characterizing health is the interaction of a person's own internal health with the external factors that determine it. Regardless of the influence of these external factors, the main responsibility lies with each individual and each person must ensure his or her own health. People, regardless of their economic and political power, individually manage and regulate their social environment.

The main factors that determine human health are divided into three parts:

- lifestyle,
- environment,
- bio-medical.

Research

Lifestyle includes individual decisions about living. Although these decisions are made with the aim of living a normal life, they can sometimes lead to illness or death. Environmental factors include external factors that affect people's bodies. These factors are not individually controllable by people. These include air, water, climate and other environmental factors (Hagegeka et al., 2020, pp. 3–6).

Biomedical factors include medical factors that are genetically determined in people's bodies, as well as existing in people, including physical and mental health. These include various diseases, viruses or vital elements necessary for the body to function. Ensuring health is usually carried out in various combinations of three factors – physical, mental and social well-being, and all of them together are called the "health triangle". Physical health means that people have a healthy body. To maintain physical health, it is necessary to engage in regular physical activity (sports), eat properly and get normal rest. If people eat normally, their living standards increase, and they are provided with quality health care, their bodies will be physically healthy.

As a result of the negative impact of environmental factors, various problems arise in people's health. These effects occur mainly through polluted water, food and atmosphere, carbon dioxide, high radiation and other means. Environmental factors later manifest problems in human health. Continuously living with polluted water or being exposed to radiation later creates conditions for the development of diseases in the body. According to the World Health Organization, 24% of diseases and 23% of deaths (early deaths) in the world occur as a result of the influence of environmental factors. This figure is higher in child deaths, at 36 %. Environmental factors have an impact on the development of 85 of the 102 diseases that are widespread in the world. Diseases that are spread by the wider influence of the environment include gastrointestinal disorders (diarrhea), lower respiratory tract infections, malaria and other diseases caused by contact with the environment. In the world, the risk of environmental factors is 5 times higher in children than in adults. This situation is even more deplorable in developing countries and underdeveloped countries. In such countries, premature mortality among children is many times higher (Zaikov et al., 1991).

Living organisms can protect themselves from certain harmful substances and pollutants with the help of resistance in the fight for survival. As a result, the organism is protected from diseases. The amount of any substance that does not cause a disease reaction in the organism is called the threshold level of that substance. Each substance has a different threshold depending on its composition and properties. On the other hand, some pollutants and harmful substances have a long-term effect on living organisms. Their threshold level is lower than that of substances that have a rapid effect. However, bioaccumulative and radioactive substances are exceptions. Thus, the threshold level for radioactive substances is 0. This means that they pose a threat to the organism in the shortest possible time.

Bioaccumulation is the process of accumulation of pollutants in a living organism and occurs when the externality of harmful substances entering the body during nutrition is weakened (Oles et al., 2025, pp. 2–5). For example, the amount of mercury in fish can be 1000 times greater than the amount of mercury in the water in which the fish is fed. So, when a person eats such fish, poisoning can occur, which can result in death. When people live in an environment of harmful, polluting substances for a long time, they ingest harmful substances at an imperceptible level. When the amount of these substances reaches a certain level, changes (poisoning) occur in the human body. In medicine, the amount of effect of substances is determined by the dose. This word is derived from the Greek word dosus, which means exact weight. The amount of toxic substances is indicated by the letter L, which is the first letter of the Latin word Lethal (killer) (Kartashev, 1998; Korte, 1997).

If poisoning occurs through inhalation, then this time is determined by the concentration of toxic gases and the time of inhalation. Ct. Here C is concentration, t is time. The concentration of substances

is calculated in mg / m³. If poisoning occurs through the respiratory tract — through the stomach, intestines, skin, muscles and blood, then the dose of the chemical is calculated in mg / kg. Thus, there are different lethal (lethal) doses (Goldovskaya, 2005).

- a) LC₅₀ – poisoning by inhalation
- b) LD₅₀ – poisoning by other routes.

The figure shown in the index indicates the probability of destruction of the human body — that is, it can result in 50% death. One of the necessary norms for human health is the determination of the amount of harmful substances in the natural environment. This is called the Permissible Concentration Limit (PCL) (Rozdin et al., 1997).

This limit means that the specified amount of the substance does not pollute the environment, the human body and future generations to the extent that it will harm them. The TLV is the main ecological norm and has a precisely defined value for air and water. It should be noted that despite the precise determination of the limit value for pollutants, their synergism (the effect of one on the toxic effect of the other) and accumulation have not been studied precisely and completely (Health and the Millennium Development Goals, 2005; World Health Organization, 2005).

Scientific and technical norms and standards have been developed on the basis of the EOI. For example, the permissible emission limit (PEL), the permissible discharge limit (PEL), etc. In accordance with these norms and standards, the amount of toxic substances released into the atmosphere and water bodies is determined and monitored.

Nuclear and thermal power plants can deviate from these norms. However, a temporarily agreed amount of waste (TD) is determined for them. There are also norms in residential areas. Thus, the average daily (OD) and maximum single (MSL) are determined for the atmosphere of a residential area. The maximum single limit is the amount of any substance in milligrams in 1m³ of air. At this time, the body does not show any reflex reaction and does not smell (Huicho et al., 2024, pp. 5–10).

The average daily (OD) limit is determined by the properties that it can cause in the body during the day, and the OD is expressed as mg/m³.

These norms are individual and constitute different amounts for each substance. It should also be noted that in order to protect the health of workers in various professions, workers in those professions use special protective clothing (gloves according to ГОСТ 12.4.010, protective glasses according to ГОСТ 12.4.4.013, special clothing according to ГОСТ 12.4.310, ГОСТ 12.4.103 and special shoes according to ГОСТ 12.4.137) in accordance with the approved standards (Ismayilova et al., 2024, pp. 129–130; Road bitumens. Technical requirements; Marhavilas et al., 2022, pp. 4–8).

Consumers are trying to produce products that are less harmful to human health and the environment. Food safety is the basis of human health. Because obtaining safe, healthy food and water plays the role of a basic function that strengthens human life and strengthens health. It is precisely food products containing dangerous bacteria, viruses and chemicals that cause the emergence of more than 200 diseases. Diarrheal diseases related to food and water cause the death of 2,000,000 people every year. In other words, food safety, nutrition and health protection have a closely interconnected chain link. As a result, the emerging diseases cause serious damage to socio-economic development and the health-sanitary system (Ismayilova et al., 2012).

Within the framework of multilateral international cooperation in the field of protecting the health of the population, the Republic of Azerbaijan has further developed its bilateral relations with the countries of the world and continues its activities in this field successfully. However, it should be noted that in the context of the development of health and medical science, the protection of public health is carried out within the framework of international documents with various regulatory subjects (Ibrahimov et al., 2010).

From this perspective, as well as from the point of view of establishing norms for the protection of public health in one form or another, bilateral international documents can be classified in terms of the subject of regulation as follows: bilateral international documents related to cooperation in the field of health and medical science; bilateral international documents defining mutual relations on friendly relations and strategic partnership, which, however, include norms for the protection of

public health; bilateral international documents providing for cooperation in the field of sports; bilateral international documents adopted in the fields of communications, transport and information technology, including those expressing norms in the field of public health and healthcare; bilateral international documents regulating relations on cooperation in the field of economy and finance; bilateral international agreements reflecting norms for cooperation in the field of science and education as a whole, as well as various aspects of the aforementioned fields, and also establishing norms affecting the development of healthcare; bilateral international documents on rescuing people during natural disasters, man-made accidents and emergencies, and protecting public health; bilateral international documents that include provisions on protecting the health of certain categories of persons (military personnel, migrant workers, the disabled, tourists, etc.) (Global Development Goals, 2013).

The primary legal basis for protecting the health of citizens of the Republic of Azerbaijan is Article 41 of the Constitution of the country, which guarantees the right of everyone to protect their health and receive medical care. At the same time, according to Article 12 of the Constitution of the Republic of Azerbaijan, the supreme goal of the state is to ensure the rights and freedoms of man and citizen, and a decent standard of living for citizens of the Republic of Azerbaijan. It should also be noted that the Constitution of the country, which establishes an adequate legal basis for the domestic implementation of international law, including international human rights standards, and other normative and legal acts adopted by the Republic of Azerbaijan in the field of human rights, are based on the principle of respect for international law. However, the legislative acts of the Republic of Azerbaijan, which include norms on the protection of the health of the population, as well as existing ones in the field of health protection, can be classified in several directions:

1) Legislative acts, which include norms on the provision and protection of the right to health protection, along with other areas (for example, national security, youth protection, socio-economic development of regions, poverty reduction and sustainable development, increasing efficiency in the field of human rights protection, etc.). For example, the "National Security Concept of the Republic of Azerbaijan", approved by the relevant decrees and orders of the President of the Republic of Azerbaijan, "National Action Plan for Increasing the Efficiency of Protection of Human Rights and Freedoms in the Republic of Azerbaijan", "State Program for Poverty Reduction and Sustainable Development in the Republic of Azerbaijan in 2008-2015", "State Program for Socio-Economic Development of the Regions of the Republic of Azerbaijan in 2014-2018", "Azerbaijani Youth in 2011-2015", "State Program for Reliable Provision of the Population with Food Products in the Republic of Azerbaijan in 2008-2015", "Azerbaijan 2020: A Look into the Future" Development Concept, etc. (Aliyev, 2000).

2) Sectoral internal state documents directly regulating various aspects related to health protection. For example, the Law "On Sanitary and Epidemiological Safety" dated November 10, 1992, the Law "On Medical Insurance" dated October 28, 1999, the Law "On Immunoprophylaxis of Infectious Diseases" dated April 14, 2000, the Law "On Combating Tuberculosis in the Republic of Azerbaijan" dated May 2, 2000, the Law "On Psychiatric Assistance" dated June 12, 2001, the Law "On Salt Iodization for the Purpose of Mass Prevention of Iodine Deficiency Diseases" dated December 27, 2001, etc. Currently, measures to protect human health, as well as work in this area, are being continued.

Conclusion

Currently, a number of important works are being carried out in Azerbaijan in the field of public health protection. Thus, within the framework of multilateral international cooperation, the Republic of Azerbaijan has further developed its bilateral relations with world states and continues its activities in this field successfully. However, it should be noted that in the context of the development of healthcare and medical science, public health protection is carried out within the framework of international documents with various regulatory subjects. It is from this point of view, as well as from the point of view of establishing norms for public health protection in one form or another, that it reflects bilateral international documents.

References

1. Aliyev, A. I. (2000). *Human rights* (Textbook). Legal Literature.
2. Bonita, R., Beaglehole, R., & Kjellstrom, T. (2005). *Basic Epidemiology. Health and the Millennium Development Goals*. World Health Organization.
3. Bread for the World Institute. (2013). *Global Development Goals, Within Reach. 2013 Hunger Report*.
4. Goldovskaya, L. F. (2005). *Environmental chemistry*. Mir.
5. *Health and the Millennium Development Goals*. (2005). Keep the promise. World Health Organization.
6. Huicho, L., Huayanay-Espinoza, C. A., Valladares, R., Oviedo-Rios, A. G., Ruiz-Lopez, S. S., Akseer, N., Maiga, A., Matijasevich, A., & Amouzou, A. (2024). Impact of COVID-19 on the utilisation of maternal and child health services in Peru at national and subnational levels: An interrupted time series analysis. *Journal of Global Health*, 14, 05039. <https://doi.org/10.7189/jogh.14.05039>
7. Hagegeka, C., Ruton, H., Karamouzian, M., Lynd, L. D., & Law, M. R. (2020). Use of interrupted time series methods in the evaluation of health system quality improvement interventions: A methodological systematic review. *BMJ Global Health*, 5, e003567. <https://doi.org/10.1136/bmjgh-2020-003567>
8. Ibrahimov, F., Ibrahimova, A., Kehler, J., & Richardson, E. (2010). Health systems in transition: Azerbaijan health system review. *European Observatory on Health Systems and Policies*.
9. Ismailova, X. Y., Gasimzade, E. A., & Gahramanova, S. A. (2012). Scientific research of Azerbaijani scientists in solving the problems of preventing atmospheric pollution. *Materials of the VI republican conference of doctoral students, masters and young researchers dedicated to the 89th anniversary of the birth of the great leader H. A. Aliyev. Actual problems of chemistry*.
10. Ismayilova, X. Y., Rizvanli, S. E., Shahpalangova, B. A., & Ismayilzade, X. V. (2024, May 2–3). Recycling of plant waste and its impact on the environment. *Research conference on the topic "Dye plant raw materials and waste processing" dedicated to the Year of Solidarity for a Green World*.
11. Kartashev, A. G. (1998). *Introduction to ecology*. Aquarius.
12. Korte, F. (1997). *Ecological chemistry* (H. V. Gradovoy (Ed.)). Mir.
13. Marhavilas, P. K., Pliaki, F., & Koulouriotis, D. (2022). International Management System Standards Related to Occupational Safety and Health: An Updated Literature Survey. *Sustainability*, 14, 13282. <https://doi.org/10.3390/su142013282>
14. Oles, W. C., Mogensen, K. M., Ahmed, A. M., & Abdulnour, R. E. E. (2025). Persistent scurvy after vitamin C supplementation in a high-risk patient: A case report. *AME Medical Journal*, 10, 28–30.
15. Road bitumens. *Technical requirements. Part 3*.
16. Rozdin, E. K., Bobkov, A. S., & Blinov, I. A. (1997). *Labor protection and environmental safety in the chemical industry* (Textbook for universities). Khimiya.
17. Zaikov, G. E., Maslov, S. A., & Rubailo, V. L. (1991). *Acid rain and environment*. Chemistry.

Received: 28.08.2025

Accepted: 30.11.2025

<https://doi.org/10.36719/3104-4700/2/25-30>

Nazrin Mamedova

Baku, Azerbaijan

<https://orcid.org/0009-0008-9988-4227>

nazrinmamedova2705@gmail.com

Najiba Abdullayeva

Baku, Azerbaijan

<https://orcid.org/0009-0008-8868-2013>

najiba.abdullayeva2004@gmail.com

The Fentanyl Crisis

Abstract

The Fentanyl Crisis refers to the growing public health emergency caused by the widespread misuse and overdose deaths linked to fentanyl, a synthetic opioid. Initially developed for medical purposes, fentanyl is now a leading cause of opioid-related deaths, particularly in North America. Its potency — 50 to 100 times stronger than morphine—makes it extremely dangerous, especially when illicitly mixed with other drugs like heroin, cocaine, or counterfeit prescription pills.

The crisis has worsened due to its illegal production and distribution, mainly by organized crime groups. The increasing availability of fentanyl has compounded the ongoing opioid epidemic. In 2021, fentanyl was involved in a significant portion of the 70,000 opioid overdose deaths in the United States. This crisis has severe societal impacts, disproportionately affecting marginalized communities, people of color, and those living in poverty.

Efforts to combat the fentanyl crisis include public health campaigns, improved addiction treatment access, naloxone distribution, and harm reduction strategies like supervised injection sites. Governments are also focused on law enforcement actions to intercept fentanyl shipments. Despite these efforts, resolving the crisis requires a comprehensive approach, including better addiction support and broader drug policy reforms.

Keywords: *fentanyl, opioid crisis, overdose deaths, public health emergency, synthetic opioid, illicit drug market, naloxone, harm reduction, addiction treatment, public health campaigns, organized crime groups, drug policy reforms*

Introduction

Fentanyl-(N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenyl-propanamide was first synthesized in the early 1960s by Dr. Paul Janssen, a Belgian pharmacologist. The goal was to create a powerful synthetic opioid with stronger analgesic (pain-relieving) properties than traditional opioids, particularly for use in medical settings. In 1968, fentanyl was first introduced into the market under the brand name Sublimaze, intended for intravenous administration in hospitals to manage severe pain. This made fentanyl an invaluable tool in anesthesia and post-surgical pain management (Comer et al., 2012). As the years went by, fentanyl became widely used in various medical forms, including as patches (Duragesic), lozenges, and injectable solutions.

Throughout the 1980s and 1990s, fentanyl gained acceptance in medical practice due to its ability to provide effective pain relief, especially in patients with tolerance to less potent opioids and patients with cancer.

However, by the mid-1980s, fentanyl's use shifted significantly. A surge in the illegal production and distribution of fentanyl began to emerge, particularly in the United States. Fentanyl was illicitly manufactured, often in clandestine labs in countries such as China and Mexico, and trafficked into North America. Illicit fentanyl was often mixed with other drugs, such as heroin, cocaine, or counterfeit prescription pills, which has contributed to a dramatic rise in overdose deaths. The earliest cases of death due to fentanyl overdose were recorded in the 1980s in the United States. Users often consumed fentanyl unknowingly, believing they were using less potent drugs, only to experience fatal overdoses due to fentanyl's extreme potency.

Research

Fentanyl's interaction with the mu-opioid receptor (MOR) is a highly specific and potent biochemical process that initiates a cascade of intracellular events. After binding to MOR, fentanyl stabilizes the receptor in its active conformation, increasing its affinity for Gi/o-type G-proteins. Activation of Gi/o proteins subsequently inhibits adenylate cyclase, an enzyme responsible for converting ATP into cyclic adenosine monophosphate (cAMP). As intracellular cAMP levels decrease, a wide range of downstream signaling pathways become suppressed, altering both neuronal excitability and neurotransmitter release. This reduction in cAMP not only contributes to the analgesic effects of fentanyl but also underlies many of its adverse physiological consequences, including respiratory depression.

Another critical aspect of fentanyl's pharmacological action is its impact on the mesolimbic dopamine system, which plays a central role in reward, motivation, and reinforcement. Under normal physiological conditions, GABAergic interneurons in the ventral tegmental area (VTA) exert inhibitory control over dopamine-producing neurons. When fentanyl binds to MORs located on these GABAergic interneurons, GABA release is markedly reduced. This removal of inhibitory tone is known as disinhibition, and it causes dopamine neurons to fire more rapidly. As dopamine levels surge in the nucleus accumbens—a key region of the brain's reward pathway—individuals experience the characteristic euphoria, pleasure, and reinforcement associated with opioid use. This mechanism explains why fentanyl has a high potential for addiction even after a short period of exposure.

Beyond its analgesic and euphoric effects, fentanyl induces a range of physiological changes that stem from MOR activation in various brain regions. In the brainstem, MORs regulate the respiratory centers responsible for automatic breathing. Fentanyl's suppression of neuronal excitability in these regions leads to a decrease in respiratory rate, tidal volume, and responsiveness to carbon dioxide. This pharmacological action is the primary reason why fentanyl overdoses are frequently fatal: respiratory depression occurs rapidly and may progress to complete respiratory arrest if not promptly reversed. Additionally, fentanyl's high lipophilicity enables it to cross the blood-brain barrier extremely quickly, producing a rapid onset of both analgesic and respiratory effects—faster and more intense than many other opioids. From a pharmacokinetic perspective, fentanyl demonstrates unique properties that distinguish it from other opioids. Its high lipid solubility allows for rapid distribution into the central nervous system, but also leads to redistribution into fatty tissues. This means that even after the initial clinical effects diminish, fentanyl can remain stored in fat and be slowly released back into circulation, posing risks for prolonged toxicity. Metabolism occurs primarily in the liver through CYP3A4-mediated pathways, producing metabolites that are excreted via the kidneys. However, variability in CYP3A4 activity—due to genetics, drug interactions, or liver impairment—can significantly alter fentanyl's potency and risk of overdose.

In chronic exposure, fentanyl induces tolerance at multiple levels. Repeated MOR activation leads to receptor desensitization, internalization, and downregulation. As a result, higher and more frequent doses are required to achieve the same pharmacological effects, dramatically increasing overdose risk. Neuroadaptive changes also occur within the reward circuitry: dopamine pathways become less responsive, contributing to dysphoria, craving, and compulsive drug-seeking behavior when the drug is not present. These adaptations form the neurobiological foundation of opioid dependence and addiction.

This combination produces an intense but short-lived euphoria, followed by sedation and respiratory depression, the latter being the main cause of fatal overdoses. Because fentanyl acts so rapidly and so strongly, the brain adapts quickly: tolerance rises, natural reward pathways weaken, emotional balance deteriorates, and dependence forms with extraordinary speed. Over time, the drug reshapes neural networks related to decision-making, impulse control, and stress response, creating a cycle in which the individual feels psychologically and physiologically compelled to continue using it despite severe consequences.

The psychological dimensions of the crisis are as significant as the pharmacological ones. Fentanyl alters mood regulation, leading to increased anxiety, irritability, depression, and emotional numbing when the drug is absent. Many people affected by this crisis report a progressive loss of interest in daily life, relationships, and personal goals as the brain's reward system becomes dominated by the opioid's effects. The connection between trauma, chronic stress, socioeconomic instability, and opioid use is well-established: individuals with unresolved psychological pain or limited support systems are more vulnerable to substance use disorders. In many communities, fentanyl misuse becomes intertwined with feelings of hopelessness, social isolation, and unmet mental health needs, turning what starts as a chemical dependency into a broader psychological and societal breakdown.

The crisis intensified as illicit fentanyl began to infiltrate street drug supplies, often without users' knowledge. Because the substance is so potent that microscopic variations in quantity can determine life or death, accidental overdoses surged. The affordability and ease of transport of synthetic opioids encouraged illegal production and distribution, while economic hardships, inconsistent mental health care, and social fragmentation created fertile ground for escalating harm. As a result, the crisis expanded beyond individual behavior into a collective trauma affecting families, healthcare systems, emergency services, and entire communities.

The societal impact is profound: rising overdose deaths, increased demand for mental health and addiction services, burdened hospitals, and widespread grief in affected regions. Communities facing the crisis often struggle with stigma, preventing individuals from seeking help or receiving compassion. At the same time, the crisis exposes gaps in pain management practices, mental health care accessibility, and socioeconomic stability. Public health responses now emphasize awareness, prevention, comprehensive treatment approaches, and support for people living with addiction, while researchers work to understand long-term neurological consequences and develop safer pain-management alternatives.

Ultimately, the fentanyl crisis is not simply about a single substance; it is a reflection of how biological vulnerability, psychological distress, and social conditions can converge into a widespread health emergency. It demonstrates how the brain's chemistry, a person's emotional world, and the structure of a society are deeply interconnected. Only through addressing all three dimensions—neurological, psychological, and social—can meaningful progress be made toward recovery and prevention.

The illegal production and trafficking of fentanyl exploded in the 2010s, contributing to the opioid epidemic in the U.S. and Canada. As fentanyl overdoses increased sharply, it became a leading cause of death in the ongoing opioid crisis. In response, law enforcement, public health officials, and governments have been forced to step up efforts to combat fentanyl trafficking, while also expanding access to naloxone (Narcan) to reverse overdoses.

The transformation of fentanyl from a breakthrough medical innovation to a public health crisis highlights the complexity of the opioid epidemic and the urgent need for continued efforts in prevention, treatment, and harm reduction. Its impact on individuals and society is profound, from the health consequences for those who become addicted to its effects, to the broader societal and economic toll of increasing drug-related deaths and strained healthcare systems.

Understanding how fentanyl is made, how it affects the human body, and the urgent need for effective prevention and treatment strategies are essential in addressing this growing crisis (Han et al., 2019). Between 2012 and 2015, the number of fentanyl-related fatalities in the U.S. more than

doubled, and by 2016, fentanyl and its analogs were responsible for nearly half of all opioid-related overdose deaths in the country. This trend continued, with a significant spike in synthetic opioid deaths recorded by the CDC, which reported over 9,500 deaths in 2015, a 72% increase from the previous year. The global spread of fentanyl has also been documented in Europe, where countries like Germany and Lithuania have seen increasing numbers of fentanyl-related fatalities.

However, it also causes respiratory depression, which can be fatal if overdosed. Its high lipophilicity allows it to cross the blood-brain barrier quickly, resulting in rapid onset of effects but also increasing the risk of overdose (Jones et al., 2018). The impact of fentanyl on public health is significant, with opioid overdose deaths continuing to rise in North America and Europe. However, the rise of fentanyl in illicit drug markets continues to challenge efforts to control the opioid epidemic, highlighting the need for continued focus on prevention, treatment, and harm reduction strategies (Jannetto et al., 2019).

In summary, fentanyl's journey from a medical breakthrough to a key player in the opioid epidemic underscores the complexity of the crisis. While it remains an essential tool for pain management, its misuse, especially in illicit drug markets, has led to a dramatic increase in overdose deaths worldwide. The growing prevalence of fentanyl-related fatalities serves as a stark reminder of the need for comprehensive approaches to address both the public health and law enforcement aspects of the opioid crisis (Comer et al., 2019).

Fentanyl is a synthetic opioid that is 50-100 times more potent than morphine. While it is used medically for pain management, its illicit use has become a leading cause of the opioid overdose crisis. Fentanyl works by binding to mu-opioid receptors in the brain, which inhibits pain transmission and induces euphoria. Its high lipophilicity allows it to quickly cross the blood-brain barrier, leading to a rapid onset of effects, which increases the risk of overdose (Giorgi et al., 2017).

The misuse of fentanyl has been a significant factor in the surge of overdose deaths in North America. Illicit fentanyl, often mixed with heroin or counterfeit pills, has been responsible for thousands of deaths. In the U.S., fentanyl was involved in over 36,000 opioid-related deaths in 2019, surpassing the death toll from heroin and prescription opioids. Fentanyl-related fatalities have also increased in Europe, particularly in countries like Germany and Lithuania (Jobski et al., 2023).

Efforts to mitigate the crisis include the distribution of naloxone (Narcan) to reverse opioid overdoses, harm reduction strategies, and law enforcement initiatives to intercept fentanyl shipments. Despite these efforts, fentanyl's high potency and widespread presence in illicit drug markets continue to challenge public health responses.

Conclusion

The fentanyl crisis has become one of the most devastating public health emergencies of the modern era, with the drug's illicit use driving a significant portion of opioid-related overdose deaths across the globe. While fentanyl remains an essential medication in clinical settings—especially for anesthesia and severe pain management—its potency and rapid central nervous system penetration make it extremely dangerous when misused. The same biological mechanisms responsible for effective analgesia also contribute to profound respiratory depression, strong reinforcement, and a high risk of dependence. Understanding these mechanisms is fundamental for developing strategies to prevent misuse, treat opioid use disorders, and reduce the growing public health impact of synthetic opioids.

The rise in fentanyl-related overdose deaths calls for a multi-faceted approach to mitigate the damage. While harm reduction strategies such as the distribution of naloxone (Narcan), fentanyl testing strips, and supervised consumption sites have proven beneficial in some regions, they are not enough on their own. Public health initiatives must also focus on expanding access to addiction treatment services, particularly medication-assisted treatment (MAT) programs that can help those addicted to opioids. In addition, public awareness campaigns are crucial to informing the public about the dangers of fentanyl, particularly the risks of unknowingly consuming fentanyl-laced drugs (Ciccarone, 2019).

Collaboration between law enforcement, public health officials, and policymakers is essential to curb fentanyl distribution and reduce overdose deaths (Kuczyńska et al., 2018). Moreover, the fentanyl crisis is deeply intertwined with larger issues of social inequality, mental health, and access to healthcare. Vulnerable populations, such as those living in economically disadvantaged areas, often have limited access to addiction treatment and are more likely to turn to illicit substances, making them particularly at risk. Addressing these underlying issues is a critical part of combating the opioid epidemic as a whole.

Only through a combination of medical interventions, harm reduction strategies, stronger enforcement, and societal support systems can we hope to reduce the devastating impact of fentanyl and eventually overcome the opioid crisis. The path forward involves a collaborative effort to protect individuals, families, and communities from the destructive effects of fentanyl and to prevent future generations from falling victim to opioid dependence and overdose.

Strengthening early-warning systems, improving toxicology surveillance, and ensuring rapid data sharing between healthcare institutions and law enforcement agencies are essential for detecting emerging trends in synthetic opioid distribution. Public education campaigns should play a central role in raising awareness about the dangers of illicit synthetic opioids, helping individuals recognize early signs of addiction, and reducing the stigma associated with seeking help. Schools, workplaces, and community organizations must also be engaged in prevention efforts, as widespread awareness and informed decision-making are key components of long-term reduction in opioid misuse.

Ultimately, the fight against the fentanyl epidemic is not solely a medical or legal challenge—it is a societal one. Success will depend on a unified, multi-sector response that balances compassion with accountability, prevention with enforcement, and innovation with evidence-based practice. By fostering stronger public health infrastructure, supporting affected families, and remaining vigilant against evolving drug threats, society can move toward a future where opioid-related harm is significantly diminished and healthier, more resilient communities can flourish.

References

1. Armenian, P., Vo, K. T., Barr-Walker, J., & Lynch, K. L. (2018). Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. *Neuropharmacology*, 134, 121–132.
2. Comer, S. D., & Cahill, C. M. (2019). Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. *Neuroscience & Biobehavioral Reviews*, 106, 49–57. <https://doi.org/10.1016/j.neubiorev.2018.12.005>
3. Comer, S. D., Cahill, C. M., & Riechelmann, R. P. (2012). Synthetic opioids: Epidemiology and clinical impact. *Journal of Psychopharmacology*, 26(10), 1318–1321.
4. Ciccarone, D. (2019). The triple wave epidemic: Opioids, heroin, and fentanyl. *Addiction*, 114(1), 1–4.
5. Global Initiative Against Transnational Organized Crime. (n.d.). *The looming threat of synthetic opioids in Europe*.
6. Giorgiotti, A., Centola, C., & Giorgiotti, R. (2017). Fentanyl-related deaths: Toxicological and pathological findings. *Forensic Science International*, 280, 43–52.
7. Han, B., Compton, W. M., Blanco, C., Crane, E., Lee, J., & Jones, C. M. (2019). Prescription opioid use, misuse, and use disorders in U.S. adults. *Translational Psychiatry*, 9, 282.
8. Jones, C. M., Einstein, E. B., & Compton, W. M. (2018). Changes in synthetic opioid involvement in drug overdose deaths in the United States, 2010–2016. *JAMA*, 319(17), 1819–1821.
9. Jannetto, P. J., Helander, A., Garg, U., Janis, G. C., Goldberger, B., & Ketha, H. (2019). The fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. *Clinical Chemistry*, 65(2), 242–253.
10. Jobski, K., Bantel, C., & Hoffmann, F. (2023). Trends in illicit fentanyl use and overdose deaths in Europe. *European Journal of Public Health*, 33(2), 245–251.
11. Kuczyńska, K., Grzonkowski, P., Kacprzak, Ł., & Zawilska, J. B. (2018). Abuse of fentanyl: An emerging problem to face. *Forensic Science International*, 289, 207–214.

12. Kelly, E., Sutcliffe, K., Cavallo, D., Ramos-Gonzalez, N., Alhosan, N., & Henderson, G. (2023). The anomalous pharmacology of fentanyl. *British Journal of Pharmacology*, 180(7), 797–812. <https://doi.org/10.1111/bph.15573>
13. O'Donnell, J. K., Gladden, R. M., & Seth, P. (2017). Trends in overdose deaths involving fentanyl and fentanyl analogs — United States, 2011–2016. *MMWR*, 66(43), 1197–1202.
14. Rudd, R. A., Aleshire, N., Zibbell, J. E., & Gladden, R. M. (2016). Increases in drug and opioid overdose deaths — United States, 2000–2014. *MMWR*, 64(50), 1378–1382.
15. Scholl, L., Seth, P., Kariisa, M., Wilson, N., & Baldwin, G. (2019). Drug and opioid-involved overdose deaths — United States, 2013–2017. *MMWR*, 67(5152), 1419–1427.
16. Suzuki, J., & El-Haddad, S. (2017). A review: Fentanyl and non-pharmaceutical fentanyls. *Drug and Alcohol Dependence*, 171, 107–116.
17. Sutcliffe, K. J., Corey, R. A., Alhosan, N., Cavallo, D., Groom, S., Santiago, M., ... & Kelly, E. (2022). Interaction with the lipid membrane influences fentanyl pharmacology. *Advances in Drug and Alcohol Research*, 2, Article 10280. <https://doi.org/10.3389/adar.2022.10280>
18. Volkow, N. D., & McLellan, T. A. (2016). Opioid abuse in chronic pain—Misconceptions and mitigation strategies. *New England Journal of Medicine*, 374(13), 1253–1263.
19. Wunsch, M. J., Nakamoto, K., Behonick, G., & Massello, W. (2010). Opioid deaths in rural America: Epidemiology and strategies for prevention. *Journal of Opioid Management*, 6(1), 15–22.

Received: 19.08.2025

Accepted: 17.11.2025

CONTENTS

Asmar Taghiyeva, Nargiz Shukurova, Nargiz Imamova, Sevda Rahimli	
<i>In Vitro</i> Cultivation and Cryopreservation of <i>Leishmania Tropica</i> Promastigotes	4
Peri Huseynova, Aliye Jafarli, Aynur Aliyeva, Sakina Abdullayeva, Aytaj Alekberova	
Schiff Bases in Biomedical Applications: A Review	10
Aynur Safarova	
Depression and Anxiety Disorders:	
A Global Mental Health Problem of the 21st Century	15
Khasmurad Ismayilzadeh	
Adopted Standards For Human Health.....	20
Nazrin Mamedova, Najiba Abdullayeva	
The Fentanyl Crisis	25

Signed: 18.12.2025
Online publication: 24.12.2025
Format: 60/84, 1/8
Stock issuance: 4 p.s..
Order: 123

It has been published on aem.az
Address: Baku city, Matbuat Avenue, 529,
“Azerbaijan” Publishing House, 6th floor
Phone: +994 50 209 59 68
+994 55 209 59 68
e-mail: info@aem.az

